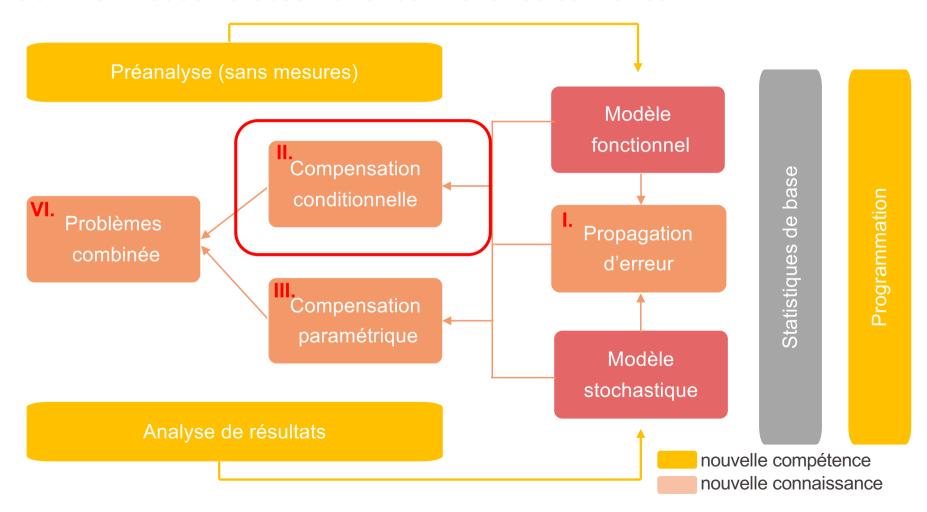
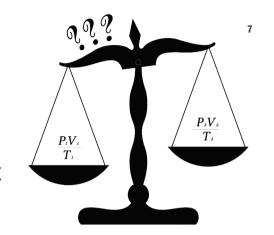

ME 5 – procédure & organisation

- Mardi 8 octobre contrôle continue I. / III.
 - Svp: annoncer votre participation sur Moodle < lundi, midi
 - Sujet: Ch. 1 + 2 avec l'évaluation autonome
 - Et si cela peut paraître difficile?
- Jeudi 10 octobre
 - (08h15) La motivation de la compensation
 - (09h15) Exo 5 = 2.6.2 Gaz parfait en 5 états
 - (10h15) ME « in-depth » questions par CAPE/Valentina

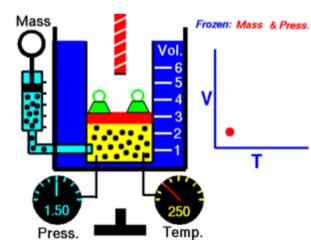




ME Cockpit de de matières et de compétences

Comment réussir à observer et estimer avec confiance?

Pourquoi compenser?



- Example (Exo 5 et Exo 6): mesurer la volume d'un récipient
- Mesure direct V_1 , V_2 , ... V_n
- Mesure indirect P_1 , T_1 , P_2 , T_2 P_n , T_n

compenser les erreurs de mesure tout en respectant les lois

- d'Avogadro: $V_n = \text{cste universelle de}(P_n, V_n)$
- de Charles: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ à pression constant
- de Gay-Lussac: $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ à volume constant


Pourquoi compenser?

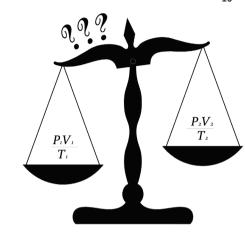
- But: compenser les erreurs de mesure tout en respectant les lois ...
- les principes sont très similaires si vous voulez :

ME 5-1: Introduction à la compensation

- Pourquoi compenser? polycopié, page viii
 - Optimiser les mesures et les modèles
 - Détecter une faute
 - Estimer la précision
 - Améliorer les résultats

Ensemble (pour observations):

« ODE An die Freude » (ode à la joie)..



- Comment compenser?
 - 9 semaines pour apprendre!
 - Méthode conditionnelle
 - La plus intuitive
 - On lie les mesures ℓ sans artifices (paramètres, x).
 - Méthode paramétrique
 - La plus commune
 - On mesure ℓ pour déterminer paramètres (x)
 - Combinations, extension

Exemple - la volume d'un récipient

2. Mesure indirect $-P_1$, T_1 , P_2 , T_2 P_n , T_n

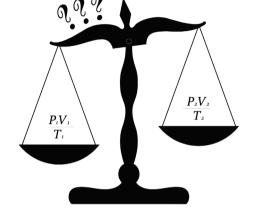
- Compenser les erreurs de mesure tout en respectant les lois ... comment?
 - Exo 5: avec ce que nous savons <u>aujourd'hui</u>!
 - Exo 6: avec ce que nous saurons la semaine prochaine!

Exo 5 - la volume d'un récipient gaz dans deux états

$$V_D, \, \sigma_{V_D}$$

- 2. Mesure indirect
 - quantités liées

$$P_i, T_i, \sigma_{Pi}, \sigma_{Ti} \quad i = 1, 2$$

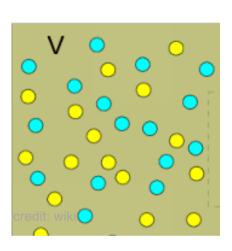


$$V_I = \frac{P_2 \cdot V_2 \cdot T_1}{T_2 \cdot P_1} = f(P_1, T_1, V_2, T_2)$$

$$\sigma_{V_I}^2 = \mathbf{F} \cdot \mathbf{K}_{\ell\ell} \cdot \mathbf{F}^T$$

3. Moyenne pondérée

$$\hat{V} = \frac{p_D \cdot V_D + p_I \cdot V_I}{p_D + p_I}$$
 $p_D = 1/\sigma_{V_D}^2 \ p_I = 1/\sigma_{V_I}^2$

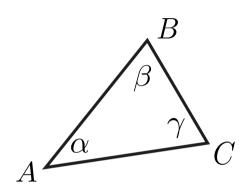


ME 5-2: Exercice gaz parfait

- Moynne pondérée
 - Demarche selon polycopié 2.6.2 pages 39-42/2023
 - Mesure directe de V₁
 - Mesure indirecte de V₁ via l'équation du gaz parfait
 - Poids via la propagation de variance

- Lire et remplir les lacunes dans le code de base
- Mécaniser la construction de F et K_{ℓℓ}
- Interpréter les résultats
- Ajouter les états 3 à 5
 - Localiser des fautes éventuelles
 - Interpréter les résultats et proposer améliorations

ME 5-3: Compenser sans le savoir ...


- Exemple
 - Triangle avec des angles de précision égale
 - Réflexion en dyade

- Propagation de variance
- Pondération de mesures directe et indirecte
- Répartition de l'écart de fermeture

- Modèle fonctionnel
- Modèle stochastique
- Surdétermination

